X
تبلیغات
جدول تناوبی عناصر - عناصرهالوژن،شبه‌فلزونافلز+گازنجیب
Astatine - Radon
Xe
Rn
Uuo


img/daneshnameh_up/c/cc/Rn_TableImage.png
جدول کامل
عمومی
نام , علامت اختصاری , شمارهRadon, Rn, 86
گروه شیمیایی گازهای نجیب
گروه , تناوب , بلوک 18 VIIIA , 6 , p
جرم حجمی , سختی 9.73 kg/m3 (273 K), NA
رنگ بی‌رنگ
خواص اتمی
وزن اتمی 222 amu
شعاع اتمی (calc.) اطلاعات موجود نیست (120) pm
شعاع کووالانسی 145 pm
شعاع وندروالس اطلاعات موجود نیست
ساختار الکترونی Xe]4 f14 5 d10 6 s2 6p6]
-e بازای هر سطح انرژی 2, 8, 18, 32, 18, 8
درجه اکسیداسیون (اکسید) 0 (نا شناخته)
ساختار کریستالی مکعبی face centered
خواص فیزیکی
حالت ماده گاز (غیر مغناطیسی)
نقطه ذوب 202 K (-96 °F)
نقطه جوش 211.3 K (-79.1 °F)
حجم مولی 50.50 scientific notation|ש10-6 m3/mol
گرمای تبخیر 16.4 kJ/mol
گرمای هم‌جوشی 2.89 kJ/mol
فشار بخار NA
سرعت صوت NA
متفرقه
الکترونگاتیویته اطلاعات موجود نیست
ظرفیت گرمایی ویژه 94 J/kg*K
رسانائی الکتریکی اطلاعات موجود نیست
رسانائی گرمایی 0.00364 W/m*K
1st پتانسیل یونیزاسیون 1037 kJ/mol
پایدارترین ایوزتوپها
isoNAنیم عمر DMDE MeVDP
211Rn{syn.}14.6 hEpsilon
Alpha
2.892
5.965
astatinebr>polonium
222Rn100%3.824 dآلفا5.590polonium
واحدهای SI & STP استفاده شده ، مگر آنکه ذکر شده باشد.

اطلاعات اولیه

رادون یکی از عناصر شیمیایی جدول تناوبی است که نماد آن Rn و عدد اتمی آن 86 می‌باشد. این عنصر از گازهای بی‌اثر و رادیو اکتیو است که توسط رادیوم بوجود می‌آید. رادون یکی از سنگین‌ترین گازها بوده ، برای سلامتی مضر می‌باشد. پایدارترین ایزوتوپ آن Rn222 می‌باشد که نیمه عمرش 3.8 روز بوده ، در پرتودرمانی کاربرد دارد.

تاریخچه

رادون در سال 1900 توسط "Friedrich Ernst Dorn" که آن را Darium Emanation نامید، کشف شد. در سال 1908، "William Ramsay" و "Robert Whytlaw-Gray" (که آن را نیتون نامید) آن را جدا کرده و چگالی آن را تعیین کردند و فهمیدند که رادون سنگین‌ترین گاز شناخته شده در آن زمان می‌باشد. این گاز از سال 1923، رادون نامیده شد.

پیدایش

بطور میانگین در هر 2110 مولکول هوا یک مولکول رادون وجود دارد. و در هر یک مایل مربع از خاک به عمق 6 اینچ ، یک گرم رادیوم وجود دارد که به رادون تجزیه شده و مقادیر بسیار ناچیزی از این گاز کشنده را در هوا منتشر می‌کند. رادون همچنین در برخی از چشمه‌های آب گرم نیز یافت می‌شود.

خصوصیات قابل توجه

رادون که یک گاز بی‌اثر است، یکی از سنگین‌ترین گازها در دمای اتاق می‌باشد. (سنگین‌ترین گاز Tungsten Hexafluride ، WF6 است.) رادون در دما و فشار استاندارد ، یک گاز بی‌رنگ است، ولی با سرما دادن به آن تا زیر درجه انجماد به رنگ سبز فسفری و درخشانی در می‌آید که با پایین آوردن بیشتر دما به رنگ زرد و در نهایت در دمای ذوب به رنگ نارنجی مایل به قرمز تغییر می‌یابد.

برخی از تجربیات نشان می‌دهند که فلوئور می‌تواند با رادون واکنش دهد و فلوئورید رادون کلاثریت‌های clathrates رادون را گزارش کرده‌اند. تمرکز رادون طبیعی در جو ، بسیار ناچیز بوده ، آبهای طبیعی در تماس با جو همچنان رادون را در عمل تبخیر از دست می‌دهند. بنابراین آبهای زیر زمینی در مقایسه با آبهای سطحی تمرکز بیشتری از رادون 222 را در خود دارند. به‌علاوه مناطق اشباع شده یک خاک معمولا مقدار بیشتری رادون در برابر مناطق اشباع نشده دارند که این به دلیل کمبود انتشار رادون در جو می‌باشد.

کاربردها

برخی بیمارستانها با انجام عمل پمپاژ گاز رادون از یک منبع رادیومی و ذخیره آن در لوله‌های بسیار کوچک که سوزن یا دانه نامیده می‌شود، رادون تولید می‌کنند که در موارد درمانی کاربرد دارد. رادون به دلیل از بین رفتن سریعش در هوا در مطالعات آب شناسی (هیدرولوژیک) برای مطالعه در خصوص فعل و انفعالات در آبهای زیرزمینی نهرها و رودخانه‌ها استفاده می‌شود.

ایزوتوپها

برای عنصر رادون 20 ایزوتوپ شناخته شده است. پایدارترن ایزوتوپ رادون ، رادون 222 است که محصول فروپاشی (ایزوتوپهای دخترخوانده) رادیوم 226 می‌باشد که با نیم عمر 3.823 روز ، ذرات الفا رادیو اکتیو از خود ساطع می‌کند. رادیوم 220 حاصل تجزیه Thorium است که تورون نامیده می‌شود. که نیمه عمر آن 55.6 ثانیه می‌باشد و اشعه آلفا از خود ساطع می‌کند. رادون 219 از Actinium گرفته شده و آکتینون نامیده می‌شود که ساطع کننده اشعه آلفا بوده و نیمه عمرش 3.96 ثانیه است.

هشدارها

رادون یک گاز سرطان‌زاست. رادون یک ماده رادیو اکتیو است و همیشه باید با احتیاط کامل با آن کار کرد. از آنجا که این عنصر ذرات آلفا از خود ساطع می‌کند، استنشاق آن بسیار خطرناک است. همچنین محصولات تجزیه‌ای آن یک غبار تشکیل می‌دهد که به‌راحتی وارد جریان هوا شده ، برای همیشه در بافتهای ریه می‌چسبد و در یک قسمت از آن به‌سختی متمرکز می‌شود. محلهایی که در آنها رادیوم ، آکتینیوم و توریوم نگهداری شده‌اند، باید بدقت به باد داده شوند تا از انباشتگی آنها جلوگیری شود. انباشتگی رادون در هوا یکی از خطرات جدی در منابع سرب و اورانیوم می‌باشد. انباشتگی رادون در خانه‌ها نیز باعث بوجود آمدن نگرانیهای زیادی در این رابطه شده است، چرا که بسیاری از سرطانهای ریه بدلیل ارتباط با گاز رادون در هر سال گزارش می‌شوند.

+ نوشته شده در 90/06/08ساعت 20:6 توسط کیوان فرهادی |

استاتین عنصری رادیو اکتیو از گروه هالوژنها می باشد که در طولانی ترین عمر ایزوتوپیAt) 210) نیمه عمر آن8.3 ساعت است . در حدود 20 ایزوتوپ شناخته شده دارد . استاتین در سال 1940 توسط Daler .corsun ,k.R.makenzie &Emiliosegre شیمیستهای آمریکائی کشف گردید . استاتین ممکن است در تیروئید مانند یُد اندوخته شود. استاتین رادیو اکتیو است وبه صورت ذاتی در طبیعت وجود ندارد .در راکتورهای هسته ای آن استفاده نمی شود .بمباران ایزوتوپ بیسموت (209 83Bi)با ذره آلفا (4 2He)حاصل زندگی کوتاه استاتین و نوترونها است.هدف از پرتو افکنی سرد بیسموت ، جلوگیری ازبخار و ناپدید شدن استاتین است.
209 83Bi + 4 2He→211 85At +21 on
ایزوتوپ At 211 نیمه عمر 7ساعت دارد ، بنابراین لازم است که با سرعت با آن کار شود .
این عنصر در طبیعت همراه با ایزوتوپهای اورانیوم و توریم وجود دارد. میزان کل استاتین موجود در پوسته زمین کمتر از یک اونس است. استاتین 217 با اورانیوم 233 و 239Np در تعادل است و از اجتماع توریم و اورانیوم با نوترونهای طبیعی حاصل می شود.
استاتین توسط بمباران بیسموت با ذرات آلفا حاصل می شود. این عنصر همچنین می تواند از تقطیر هوا توسط گرما نیز به دست آید.
خاصیت فلزی استاتین بیشتر از ید است. آزمایشگاه بین المللی Brookhaven به تازگی روش جدیدی را برای شناسایی و اندازه گیری مواد رادیواکتیو از جمله استاتین با استفاده از پرتوهای مولکولی ارائه کرده است.


عنصر At در طبیعت


اثرات استاتین بر روی سلامتی
مقدار استاتین در پوسته زمین کمتر از 30 گرم است و تنها چند میکروگرم از آن به طور مصنوعی تولید می شود. استاتین اثر منفی بر روی سلامتی انسان ندارد.
استاتین در آزمایشگاههای هسته ای بررسی شده است و به خاطر رادیواکتیو بودن این عنصر روشهای خاصی مورد استفاده قرار می گیرد و باید بسیار مراقب بود.
استاتین نوعی هالوژن است و احتمالا مانند ید در غده تیرویید تجمع می یابد. از نظر شیمیایی، سمیت استاتین مانند ید است.


اثرات زیست محیطی استاتین
استاتین در بیوسفر زیاد نیست و بنابراین خطری برای محیط زیست محسوب نمی شود.


خواص فیزیکی و شیمیایی عنصر استاتین :
عدد اتمی : 85
جرم اتمی : 210
نقطه ذوب : C° 302
نقطه جوش : C° 337
شعاع اتمی : Å 1.43
ظرفیت : 7
رنگ : متالیک
حالت استاندارد : جامد
نام گروه : 17
انرژی یونیزاسیون : Kj/mol 926
شکل الکترونی : Xe4f144d105s25p5
الکترونگاتیوی: 2.2
حالت اکسیداسیون: ±1,3,5,7
دوره تناوبی : 6

شماره سطح انرژی : 6
اولین انرژی : 2
دومین انرژی : 8
سومین انرژی : 18
چهارمین انرژی : 32
پنجمین انرژی : 18
ششمین انرژی : 7
ایزوتوپ :
ایزوتوپ نیمه عمر
At-206 29.4 دقیقه
At-208 1.6 ساعت
At-211 7.2 ساعت
At-215 0.1 میلی ثانیه
At-217 32.0 میلی ثانیه
At-218 1.6 ثانیه
At-219 50.0 ثانیه

اشکال دیگر :
هیدرید استاتین Hat

موارد استفاده : هنوز شناخته نشده است .
منابع : مصنوعی ( ساخت دست بشر )


+ نوشته شده در 90/06/08ساعت 19:54 توسط کیوان فرهادی |

برم گازی قرمز قهوه ای و دارای سیستم اورترومبیک است . برم در آب دریا وجود دارد . این عنصر در سال 1826 توسط دانشمند فرانسوی Antoine J. Balard کشف گردید .
مقدار کمی بُرمی تواند از واکنش نمک سدیم جامد (NaBr) با تغلیظ اسید سولفوریک ساخته شود .در مرحله نخست ترکیباتی ا ز گاز HBr ساخته می شود اما در پایین تراز شرایط واکنشی HBr بوسیله اسید سولفوریک بیشتر به شکل بُرمودی اکسید سولفور اکسید می شود . واین واکنشها با کلرید ها وفلوریدها ی مشابه عمل نمی کند.

این عنصر در سال 1826 توسط Balard کشف شد ولی تا سال 1860 نمونه آن آماده سازی نشده بود.
این عنصر از گروه هالوژنها است . برم از آب نمک طبیعی چاهها در ایالت میشیگان و آرکاناس تولید می شود. برم همچنین از آب دریا نیز به دست می آید آب دریا حدود 85 ppm برم دارد.
برم تنها عنصر غیر فلزی است که در طبیعت به صورت مایع یافت می شود. این عنصر سنگین، متحرک، مایع قهوه ای مایل به قرمز است و در دمای اتاق به سرعت به رنگ قرمز در می آید. بخار آن دارای بوی نامطبوعی می باشد. این عنصر شبیه کلر می باشد و دارای خاصیت سوزش چشم و گلو است. این عنصر به راحتی در آب و سولفید کربن حل می شود و محلول قرمز رنگی را تولید می کند فعالیت و واکنش پذیری آن کمتر از کلر است اما از ید بیشتر است به سرعت با عناصر دیگر ترکیب می شود و دارای خاصیت سفید کننده و رنگبری نیز می باشد. این عنصر برای سلامتی مضر است و در موقع استفاده از آن باید دقت لازم را به عمل آورد.
بیشتر تولیدات برم در آمریکا در تولید در اتیلن برومید که یک ردیاب برای عنصر سرب است که برای استفاده بنزین ضدکوبش به کار می رود.
برم برای مواد ضدعفونی کننده استفاده می شود. برم عنصری ضد شعله است. برای خلوص و پالایش آب استفاده می شود. برای رنگبری، مصارف پزشکی، کاربرد دارد . از ترکیبات برم آلی در عکاسی استفاده می شود.




ساختار بلوري عنصر برم




اثرات برم بر روی سلامتی
برم عنصری است که به طور طبیعی در بسیاری از مواد غیرآلی وجود دارد. اما انسان سالها قبل شناسایی برم آلی موجود در محیط زیست را آغاز کرد. این برمها، ترکیباتی هستند که طبیعی نبوده و برای سلامتی انسان و محیط زیست مضر می باشند.
انسان می تواند برم آلی را از راه پوست، غذا و تنفس جذب کند. برم آلی در حشره کشها کاربرد بسیاری دارد و برای کشتن حشرات و آفات دیگربه کار می رود. اما این حشره کشها تنها برای جانوران مضر نیستند بلکه برای جانوران بزرگتر هم خطرناک هستند. در بسیاری موارد این حشره کشها برای انسان هم سمی هستند.
مهمترین عارضه ای که توسط آلاینده های حاوی برم آلی ایجاد می شود، اختلال سیستم عصبی و ایجاد جهش در ماده ژنتیکی است.
اما برم آلی می تواند باعث آسیب اندامهایی مانند کبد، کلیه، ششها، طحال و اختلالات معده و روده می شود. بعضی از انواع برم آلی مانند اتیلن برمین هم می توانند باعث سرطان شوند.
برم غیرآلی در طبیعت وجود دارد اما با وجود این که به طور طبیعی وجود دارد اما انسان مقدار آن را در طبیعت زیاد کرده است. انسان از طریق غذا و آب آشامیدنی مقدار زیادی از برم غیرآلی را جذب می کند. این برم به سیستم عصبی و غده تیرویید آسیب می رساند.

اثرات زیست محیطی برم
برم آلی، به خاطر صدمه زدن به جانداران به عنوان ماده گندزا به کار می رود. وقتی برم در گلخانه ها و مزارع مورد استفاده قرار گیرد، به آسانی وارد آبهای سطحی می شود که برای دافنی ها، ماهیها ، خرچنگها و جلبکها بسیار مضر است.
برم آلی به پستانداران آسیب می رساند به ویژه وقتی در بدن صید آنها تجمع یافته باشد. مهمترین اثر آن روی جانوران، صدمات عصبی و در مرحله بعد آسیب DNA است که احتمال سرطان را هم افزایش می دهد.
جذب برم آلی از راه غذا، تنفس و پوست صورت می گیرد.
وقتی برم آلی تجزیه شود، برم غیرآلی به وجود می آید. جذب مقدار زیادی ا زبرم غیر آلی به سیستم عصبی آسیب می رساند.
در گذشته که برم آلی در غذای گاوها زیاد بود، مقدار زیادی برم وار بدن انسان می شد. برای جلوگیری از آلودگی انسانها هزاران گاو و خوک کشته شدند. گاوها چار بیماریهای کبد، کوری و اختلالات رشد، اختلالات ایمنی، کم شیری و نازایی می شدند.



عنصر برم در طبيعت


خواص فیزیکی و شیمیایی عنصر برم :
عدد اتمی:35
جرم اتمی:79.904
نقطه ذوب : C° -7.1
نقطه جوش : C° 59.25
شعاع اتمی : Å 1.12
ظرفیت: 7
رنگ: قرمز قهوه ای
حالت استاندارد: مایع
نام گروه: 17
انرژی یونیزاسیون: Kj/mol 1142.7
شکل الکترونی: 4P 5 2 1s22s2p63s23 p63d 104s
شعاع یونی : Å 1.96
الکترونگاتیوی:2.96
حالت اکسیداسیون: ±1,5
دانسیته: 3.119
گرمای فروپاشی : Kj/mol 5.286
گرمای تبخیر : Kj/mol 15.438
گرمای ویژه: J/g Ko 0.473
دوره تناوبی:4

شماره سطح انرژی : 4
اولین انرژی : 2
دومین انرژی : 8
سومین انرژی : 18
چهارمین انرژی : 7
ایزوتوپ :
ایزوتوپ نیمه عمر
Br-76 16.0 ساعت
Br-77 2.4 روز
Br-79 پایدار
Br-80 17.7 دقیقه
Br-80m 4.42 ساعت
Br-81 پایدار
Br-82 1.5 روز
Br-83 2.4 ساعت
Br-84 31.8 دقیقه
Br-85 2.9 دقیقه

اشکال دیگر :
هیدرید برم HBr
اکسید دی برم Br2O و دی اکسید برم BrO2
کلرید برم BrCl

منابع : آب دریا

کاربرد : در پالایش آب ( در استخرهای شنا ) برای تولید سفید کننده ها ، حلالها ، به عنوان ماده ای برای کاهش احتراق در مواد پلاستیکی ، مورد استفاده قرار می گیرد . همچنین در ساخت مواد سمی ، حشره کش ها نیز مورد استفاده قرار می گیرد .


منبع : معرفی عناصر - P30World Forums

+ نوشته شده در 90/06/08ساعت 17:39 توسط کیوان فرهادی |

بور عنصری شبه فلزی است که هم به صورت پودر بی شکل قهوهای تیره تا سیاه و جامد بلورین سیاه براق تا خاکستری- نقره ای موجود است.یک ساختار بلورین تترا گونال و دو ساختار رومبو هدرال برای بور شناخته شده است. بور اولین بار توسط H. Day, J.L. Gay-Lussac, L.J. Thenard دانشمندان انگلیسی و فرانسوی در سال 1808 کشف گردید .
این عنصر در سنگ تورمالین هم موجود است.ساده ترین روش تهیه بور احیاء تری اکسید بور از طریق گرما دادن با منیزیم است که این منجر به تولید پودر بی شکل این عنصر می شود.

این عنصر به صورت آزاد در طبیعت یافت نمی شود اما اسیدهای بور در آبهای آتشفشانی و بوراتها و کولمانیت یافت می شود. منابع مهم بور عبارتند از کانی های رازوریت و تینکال. این دو کانی در بیابانهای Mojave یافت می شود معادن بوراکس بیشتر در ترکیه پراکنده هستند.
ایزوتوپهای بور به صورت طبیعی وجود دارند بور دارای دو ایزوتوپ 10B و 11B است که اولی 19.7 درصد و دومی 80.22 درصد را به خود اختصاص دادند. بلورهای کریستاله با خلوص بالا از ترکیبات تری کلرید بور و تری برومید با حضور هیدروژن و توسط فیلامنتهای برقی حرارت بالا تولید می شوند. برمهای بی شکل و ناخالص دارای رنگهای قهوه ی مایل به سیاه هستند و به صورت پودر وجود دارند که می تواند توسط گرمایش پودر منیزیم و تری اکسید به دست بیاید. برم 99.9999 درصد خالص در استفاده های تجارتی قابل دسترسی می باشد.
از مشخصات نوری این عنصر این است که اشعه مادون قرمز را از خود عبور می دهد. بور دارای رسانایی ضعیف است اما در دمای بالا رسانای خوبی است.
بورهای بی شکل در مواد آتش بازی برای فراهم کردن رنگ سبز و همینطور برای مواد قابل احتراقی که در راکتورها است مورد استفاده قرار می گیرد. ترکیب تجاری بور در بازار Na2B4O7.5H2O است. این ترکیب با نام پنتاهیدرات برای ساخت شیشه های فایبر گلاس و براسی رنگبری پربورات سدیم استفاده می شود.
اسید بوریک یکی از ترکیبات مهم بور می باشد که در بافت پارچه و منسوجات کاربرد دارد. بوراکس نیز یکی دیگر از ترکیبات بور است که به عنوان گندزدا از آن استفاده می شود. ترکیبات بور کاربردهای زیادی دارد که در ساخت شیشه های بوروسیلیکات استفاده می شود.
ایزوتوپ بور 10 برای کنترل راکتورهای اتمی به عنوان پوشش در برابر تشعشعات هسته ای استفاده می شود و همینطور از این ترکیب در تجهیزات ردیابهای نوترونی استفاده می شود. نیترید بور دارای خصوصیات عجیبی است که برای ساخت مواد با سختی بالا کاربرد دارد. نیترید بور همچنین برای عایق بندی الکتریکی نیز استفاده می شود.
بور دارای خصوصیات چرب و روانی مثل گرافیت دارد. هیدراتها به راحتی اکسیده می شوند و انرژی زیادی را آزاد می کنند و برای مطالعه اکتورهای هسته ای نیز از آنها استفاده می شود. به علت خصوصیات سبک وزنی و استحکام بالا بور برای استفاده تشکیلات و ساختارهای فضایی مورد استفاده قرار می گیرد.
از نظر ظرفیت و پایداری و ساختار مولکولی شبکه ای بور شبیه کربن است
قیمت بور کریستاله با خلوص 99 درصد در بازار 5 دلار در گرم است و قیمت بور بیشکل 2 دلار در هر گرم می باشد.



ساختار بلوري عنصر بور


اثرات بور در سلامتي انسان
بر اثر هوازدگي، بور به هوا، خاک و آب وارد ميشود. بور به مقدار جزئي در آبهاي زيرزميني وجود دارد. انسان با فعاليتهايي از قبيل ساخت شيشه، احتراق زغالسنگ، ذوب مس و استفاده از کودهاي کشاورزي سبب وارد بور به محيط زيست ميشود. مقدار بوري که با استفاده از فعاليتهاي انساني به محيط زيست وارد ميشود در مقايسه با بوري که به طور طبيعي و از طريق فرآيند هوازدگي به محيط وارد ميشود، کمتر است. گياهان، عنصر شيميايي بور را از زمين دريافت ميکنند و بر اثر استفاده جانوران از گياهان مقدار بور در زنجيره غذايي به پايان ميرسد.
زمانيکه بدن جانوران مقدار زيادي بور در مدت زمان طولاني از طريق غذا و آب آشاميدني جذب ميکند، اندام هاي توليد مثلي جانوران نر تحت تاثير قرار ميگيرد. اگر جانوران ماده طي بارداري مقدار زيادي بور دريافت ميکنند، تولد موجود جديد با مشکل همراه خواهد بود و ممکن است به تاخير بيفتد يا موجود جديد ناقص به دنيا بيايد. به علاوه، اگر جانوران گاز بور را تنفس کنند، از آسيبهاي شنوايي رنج خواهند بود.

اثرات بور بر محيط زيست
بور عنصري است که با استفاده از فرآيندهاي طبيعي در محيط زيست تشکيل ميشود. انسانها عنصر شيميايي بور را از طريق ميوه، سبزيجات، آب، هوا و محصولات مصرفي دريافت ميکنند.
خوردن ماهي يا گوشت سبب افزايش غلظت بور در بدن انسان نميشود، زيرا بور در بافت جانوران تجمع نمي يابد.
پرتوزايي بور در هوا و آب آشاميدني چندان زياد نيست، اما احتمال پرتوزايي بور در غبار بورات در محل کار کارگران زياد است.
زمانيکه فردي مقدار زيادي غذاي حاوي بورمصرف کند، غلظت بور در بدن آنقدر افزايش مي يابد که در بدن فرد مشکلات فراواني ايجاد ميکند. بور باعث عفونت معده، کبد، کليه ها و مغز ميشود و در نهايت سبب مرگ فرد ميگردد. مقدار اندک بور باعث بروز اختلالاتي در گوش، گلو يا چشم ميشود.



خواص فیزیکی و شیمیایی عنصر بور :
عدد اتمی:5
جرم اتمی: 10.811
نقطه ذوب : C°2075
نقطه جوش : C°4002
شعاع اتمی : Å 1.17
ظرفیت: 3
رنگ: مشکی
حالت استاندارد: مایع
نام گروه:3
انرژی یونیزاسیون : Kj/mol 800.6
شکل الکترونی: 1s2 2s2p1
شعاع یونی : Å 0.23
الکترونگاتیوی: 2.04
حالت اکسیداسیون: 3+
دانسیته: 2.34
گرمای فروپاشی : Kj/mol 50.2
گرمای تبخیر : Kj/mol 489.7
مقاومت الکتریکی : Ohm m: 1.8×104
گرمای ویژه: J/g Ko 1.02
دوره تناوبی:2

شماره سطح انرژی : 2
انرژی اولیه : 2
انرژی ثانویه : 3
شماره ایزوتوپ : 2
ایزوتوپ :
ایزوتوپ نیمه عمر
B-10 پایدار
B-11 پایدار

اشکال دیگر :
اکسید بور B2O3
هیدرید بور B2H6
کلرید بور BCl3


منابع : کانی کرنیت و بورات کلسیم و سدیم

کاریرد : به همراه تیتانیم و تنگستن در ساخت آلیاژهائی با مقاومت گرمائی بالا بکار می رود .همچنین در ساخت راکت تنیس و به عنوان تنظیم گرنیروگاه های هسته ای بکار می رود . همچنین در ساخت آلیاژ بوراکس با مقاومت ویژه بالا و ساخت شیشه (B2O3) نیز استفاده می شود .


منبع: معرفی عناصر  P30World Forums

+ نوشته شده در 90/06/08ساعت 17:5 توسط کیوان فرهادی |


Tin - Antimony - Tellurium
Bi
Sb
As

img/daneshnameh_up/0/08/Sb_TableImage.png
جدول کامل
عمومی
نام , علامت اختصاری , شمارهAntimony, Sb, 51
گروه شیمیایی شبه فلز
گروه , تناوب , بلوک15 VA, 5 , p
جرم حجمی , سختی 6697 kg/m3, 3
رنگ خاکستری نقره‌ای درخشان
img/daneshnameh_up/1/19/125pxSb2C51.jpg
خواص اتمی
وزن اتمی 121.760
شعاع اتمی (calc.) 145 (133) pm
شعاع کووالانسی 138 pm
شعاع واندروالس اطلاعات موجود نیست
ساختار الکترونی Kr]4d10 5s2 5p3]
-e بازای هر سطح انرژی 2, 8, 18, 18, 5
درجه اکسیداسیون (اکسید) ±1 (اسیدی ملایم)
ساختار کریستالی رومبوهدرال
خواص فیزیکی
حالت ماده جامد
نقطه ذوب 903.78 K (1167.13 °F)
نقطه جوش 1860 K (2889 °F)
حجم مولی 18.19 scientific notation|ש10-6 m3/mol
گرمای تبخیر 77.14 kJ/mol
گرمای هم‌جوشی 19.87 kJ/mol
فشار بخار 2.49 E-9 Pa در6304 K
سرعت صوت m/s در K
متفرقه
الکترونگاتیویته 2.05 (درجه پاولینگ)
ظرفیت گرمایی ویژه 210 J/kg*K
رسانائی الکتریکی 2.88 106/m اهم
رسانائی گرمایی 24.3 W/m*K
1st پتانسیل یونیزاسیون 834 kJ/mol
2nd پتانسیل یونیزاسیون 1594.9 kJ/mol
3rd پتانسیل یونیزاسیون 2440 kJ/mol
4th پتانسیل یونیزاسیون 4260 kJ/mol
5th پتانسیل یونیزاسیون 5400 kJ/mol
6th پتانسیل یونیزاسیون 10400 kJ/mol
پایدارترین ایزوتوپها
isoNAنیم عمر DMDE MeVDP
121Sb57.36%Sb با 70 نوترون ، پایدار است
123Sb42.64%Sb با 72 نوترون پایدار است
125Sb{syn.}2.7582 yBeta-0.767125Te
واحدهایSI & STP استفاده شده مگر آنکه ذکر شده باشد.

اطلاعات اولیه

آنتیموان ، عنصر شیمیایی است که در جدول تناوبی دارای نشان Sb و عدد اتمی 51 است. آنتیموان که یک شبه فلز است، دارای چهار حالت آلوتروپیک می‌باشد. شکل پایدار این عنصر ، فلزی آبی – سفید است و انواع زرد و سیاه آن ناپایدار می‌باشد. این عنصر در مواد ضد آتش ، رنگها ، سرامیک ، لعاب و آلیاژهای گوناگون و لاستیک بکار می‌رود.

تاریخچـــــــه

آنتیموان ( یونانی anti بعلاوه monos به‌معنی فلزی که به‌تنهایی یافت نمی‌شود ) در دوران باستان درترکیبات مختلف شناخته شد و بعدها در اوایل قرن 17 و احتمالا" زودتر بعنوان یک فلز شناسایی شد. وجود این فلز را اولین بارسال 1450 ، "Tholden" بطور علمی گزارش کرد. استیب نیت ، سولفید طبیعی آنتیموان در دوران انجیل بعنوان دارو و وسیله آرایش کشف و مورد استفاده قرار گرفت.

ارتباط بین نام جدید آنتیموان و نماد آن پیچیده است؛ نام قبطی پودر آرایشی سولفید آنتیموان ، توسط یونانیان قرض گرفته شد و بعد در زبان لاتین هم وارد شد که نتیجه آن واژه stibium است. "Jacob Berzelius" کاشف علم شیمی در نوشته‌های خود نام اختصاری برای آنتیموان بکار برده و این نام همچنان مورد استفاده است.

خصوصیات قابل توجه

آنتیموان در حالت عنصری خود شکننده ، گدازپذیر ، نقره فام و بلوری است که خاصیت هدایت الکتریکی و حرارتی ضعیفی دارد و در دمای کم تبخیر می‌شود. شبه فلز آنتیموان از نظر ظاهری و خصوصیات فیزیکی شبیه فلز است، اما از نظر شیمیایی مثل فلز واکنش نمی‌دهد. همچنین این عنصر مورد حمله اسیدهای اکسید کننده و هالوژنها قرار می‌گیرد.

فراوانی آنتیموان در پوسته زمین بین ppm 5,0 تا 0,2 برآورد شده است. آنتیموان ، کالکوفیل است و با گوگرد و فلزات سنگین سرب ، مس و نقره وجود دارد.

کاربردهــــــــا

  • استفاده از آنتیموان در صنایع نیمه هادی و در تولید دیود ها ، موج یابهای مادون قرمز و وسایل Hall-effect رو به افزایش است.
  • این شبه فلز ، بصورت آلیاژ موجب افزایش سختی و مقاومت مکانیکی سرب می‌شود. مهمترین کاربرد فلز آنتیموان بعنوان سخت‌کننده سرب در خازنها می‌باشد.
  • در باطریها
  • آلیاژهای ضد اصطکاک
  • فلز ویژه حروف چاپ
  • گلوله های رسام و جنگ‌افزارهای کوچک
  • روکش کابل
  • از ترکیبات آنتیموان به‌صورت اکسیدها ، سولفیدها ، آنتیمونات سدیم و تری‌کلرید آنتیموان در ساخت ترکیبات ضدحریق ، لعاب سرامیک ، شیشه ، رنگ و سفالگری استفاده می‌شود. تری‌اکسید آنتیموان مهمترین ترکیبات آنتیموان است و بیشتر در تنظیمات واپسگر آتش بکار می‌رود. کاربردهای واپسگر آتش در مواردی مثل لباس بچه ، اسباب بازی ، هواپیما و روکش صندلی اتومبیل است.

منابع در طبیعت

اگرچه این عنصر فراوان نیست، در بیش از 100 گونه ماده معدنی وجود دارد. آنتیمـوان گاهی اوقات بصورت بومی یافت می‌شود، اما عمدتا" در سولفید استیب نیت ( Sb2S3) که سنگ معدنی فراوانی است، وجود دارد. اشکال تجاری آنتیموان بیشتر بصورت شمش ، قطعات خرد شده ، ریزدانه و قالبهای ریخته شده می‌باشد. سایر شکلهای آن ، پودر ، گلوله و بلورهای مجزا است.

هشدارهـــا

آنتیموان و بسیاری از ترکیبات آن ، سمی هستند.

+ نوشته شده در 90/05/14ساعت 20:1 توسط کیوان فرهادی |


Gallium - Germanium - Arsenic
Si
Ge
Sn

img/daneshnameh_up/9/98/Ge_TableImage.png
جدول کامل
عمومی
نام , علامت اختصاری , شمارهGermanium, Ge, 32
گروه شیمیایی شبه فلز
گروه , تناوب , بلوک14 IVA, 4 , بلوک p
جرم حجمی , سختی 5323 kg/m3, 6
رنگ سفید مایل به خاکستری
img/daneshnameh_up/a/ae/125pxGe2C32.jpg
خواص اتمی
وزن اتمی 72.64 amu
شعاع اتمی (calc.) 125 (125) pm
شعاع کووالانسی 122 pm
شعاع وندروالس اطلاعات موجود نیست
ساختار الکترونی argon]3d10 4s2 4p2]
-e بازای هر سطح انرژی2, 8, 18, 4
درجه اکسیداسیون (اکسید) 4 (آمفوتریک)
ساختار کریستالی مکعبی face centered
خواص فیزیکی
حالت ماده جامد
نقطه ذوب 1211.4 K (1720.9 °F)
نقطه جوش 3093 K (5108 °F)
حجم مولی 13.63 scientific notation|ש10-6 m3/mol
گرمای تبخیر 330.9 kJ/mol
گرمای هم‌جوشی 36.94 kJ/mol
فشار بخار 0.0000746 Pa at 1210 K
سرعت صوت 5400 m/s at 293.15 K
متفرقه
الکترونگاتیویته 2.01 (درجه پائولینگ)
ظرفیت گرمایی ویژه 320 J/kg*K
رسانائی الکتریکی 1.45 اهم
رسانائی گرمایی 59.9 W/m*K
1st پتانسیل یونیزاسیون 762 kJ/mol
2nd پتانسیل یونیزاسیون 1537.5 kJ/mol
3rd پتانسیل یونیزاسیون 3302.1 kJ/mol
4th پتانسیل یونیزاسیون 4411 kJ/mol
5th پتانسیل یونیزاسیون 9020 kJ/mol
پایدارترین ایزوتوپها
ایزووفور طبیعینیم عمر DMDE MeVDP
70Ge21.23%Ge با 38 نوترون پایدار است
72Ge27.66%Ge با 40 نوترون پایدار است
73Ge7.73%Ge با 41 نوترون پایدار است
74Ge35.94%Ge با 42 نوترون پایدار است
واحدهای SI& STP استفاده شده ، مگر آنکه ذکر شده باشد.

اطلاعات اولیه

ژرمانیم عنصر شیمیایی است که با نشان Ge و عدد اتمی 32 در جدول تناوبی وجود دارد. ژرمانیم ، شبه فلزی است سخت ، درخشان ، به رنگ سفید خاکستری که از نظر شیمیایی شبیه قلع می‌باشد. این عنصر تعداد بسیار زیادی از ترکیبات آلی – فلزی را تشکیل داده و ماده نیمه هادی مهمی در ترانزیستورها و نورسنج‌ها به‌حساب می‌آید.

تاریخچه

ژرمانیم ( از واژه لاتین Germania به معنی آلمان ) یکی از عناصری بود که "مندلیف" در سال 1871 وجود آن را بعنوان یک آنالوگ گم شده گروه سیلیکون پیش‌بینی کرده بود ( مندلیف آنرا ekasilicon نامید ). وجود این عنصر را "Clemens Winkler" در سال 1886 اثبات نمود. این کشف تاییدیه مهمی برای نظریه مندلیف در مورد وضعیت تناوبی عناصر بود.
خاصیت
اکاسیلیکون
ژرمانیوم
جرم اتمی
72
72.59
چگالی(g/cm3)
5.5
5.35
نقطه جوش(°C)
بالا
947
رنگ
خاکستری
خاکستری
ساخت ترانزیستورهای ژرمانیم مقدمه استفاده‌های بی‌شمار از علم الکترونیک solid-state گشت. از سال 1950 تا اوایل دهه 80 این حوزه بازار روزافزونی برای ژرمانیم بوجود آورد، اما بعد از آن ، سیلیکون خالص کم‌کم در ترانزیستورها ، دیودها و یکسو کننده‌ها جایگزین ژرمانیم شد. سیلیکون خصوصیات الکتریکی برتری دارد، اما نمونه‌های بسیار خالص‌تری نیاز دارد، درجه خلوصی که در روزهای اولیه بصورت تجاری قابل دستیابی نبود، در حالیکه نیاز به ژرمانیم در شبکه‌های ارتباطی فیبر نوری ، سیستم‌های مادون قرمز دید در شب و کاتالیزورهای پلیمریزاسیون شدیدا" افزایش یافت. این کاربردهای نهائی ، 85% مصرف جهانی ژرمانیم را در سال 2000 تشکیل می‌دهد.

پیدایش

این فلز در کانی‌های آرژیرودیت یا سیم سنگ ( سولفید ژرمانیم و نقره ) ، زغال سنگ ، ژرمانیت ، روی و کانیهای دیگر یافت می‌شود.

ژرمانیم بصورت تجاری از پردازش سنگ معدن مذاب روی و از سوختن محصولات جانبی زغال سنگهای خاصی بدست می‌آید، بنابراین اندوخته زیادی از این عنصر در منابع زغال سنگ وجود دارند. این شبه فلز را می‌توان بوسیله تقطیر جزئی تترا کلرید فرار آن از فلزات دیگر نیز تهیه نمود. این روش باعث تولید ژرمانیم با خلوص بسیار بالا می‌شود. قیمت هر گرم ژرمانیم در سال 1997 تقریبا" 3 دلار آمریکا و قیمت هر کیلو آن در پایان سال 2000 معادل 1150 دلار بود.

خصوصیات قابل توجه

ژرمانیم عنصری سخت و به رنگ سفید مایل به خاکستری است که دارای درخشش فلزی و ساختار بلوری همانند الماس می‌باشد. توجه به این نکته ضروری است که ژرمانیم یک نیمه هادی با ویژگیهای الکتریکی بین فلز و عایق است. نوع خالص این شبه فلز ، بلورین و شکننده بوده و در دمای اطاق درخشش خود در هوا را حفظ می‌کند. روشهای تصفیه منطقه‌ای باعث تولید ژرمانیم بلورین برای نیمه هادیها گشته که فقط دارای یک جزء در 1010 ناخالصی هستند.

کاربردها

ژرمانیم برخلاف بیشتر نیمه هادی‌ها دارای band gap یا شکاف نوار کوچکی است که امکان واکنش موثر به اشعه مادون قرمز را بوجود می‌آورد، بنابراین ژرمانیم در طیف نماهای مادون قرمز و سایر تجهیزات دیداری که نیازمند یابنده‌های حساس مادون قرمز است، کاربرد دارد. ضریب شکست و ویژگیهای تجزیه اکسید آن ، استفاده از ژرمانیم را در عدسی‌های زاویه باز دوربین و عدسیهای شیئی میکروسکوپ سودمند می‌کند.

موسیقیدانانی که مایل به بازآفرینی حالت خاص تقویت کننده‌های اوایل دوره Rock and roll هستند، هنوز هم در تقویت کننده‌های گیتار برقی از ترانزیستورهای ژرمانیم استفاده می‌کنند.

آلیاژ ژرمانید سیلیکون ( SiGe ) در حال تبدیل سریع به ماده نیمه هادی مهم در IC های سرعت بالا می‌باشد. مدارهایی که از پیوندهای Si-SiGe استفاده می‌کنند، می‌توانند نسبت به مدارهایی که تنها سیلیکون بکار می‌برند سرعت خیلی بیشتری داشته باشند.

ترکیبات خاصی از ژرمانیم برای پستانداران مسمومیت کمی دارند، اما برای باکتریهای خاصی اثرات سمی دارند. این ویژگی ، اینگونه ترکیبات را به عوامل شیمی درمانی مفیدی تبدیل کرده است.

+ نوشته شده در 90/05/13ساعت 18:26 توسط کیوان فرهادی |



Germanium - آرسنیک - Selenium
P
Ar
Sb

img/daneshnameh_up/3/33/As_TableImage.png
جدول کامل
عمومی
نام, علامت اختصاری, شمارهArsenic, As, 33
گروه شیمیایی شبه فلز
گروه, تناوب, بلوک15 «VA), 4 , p
جرم حجمی, سختی 5727 kg/m3, 3.5
رنگ خاکستری براق
img/daneshnameh_up/4/45/125pxAs2C33.jpg
خواص اتمی
وزن اتمی 74.92160 amu
شعاع اتمی (calc.) 115 (114) pm
شعاع کووالانسی 119 pm
شعاع وندروالس 185 pm
ساختار الکترونی Ar]3d10 4s2 4p3]
-e بازای هر سطح انرژی 2, 8, 18, 5
درجه اکسیداسیون (اکسید) +-3,5 (اسید ملایم)
ساختار کریستالی رومبوهدرال
خواص فیزیکی
حالت ماده جامد
نقطه ذوب 1090 K (1503 °F)
نقطه جوش 887 K (1137 °F)
حجم مولی 12.95 ש»10-6 ««متر مکعب بر مول
گرمای تبخیر 34.76 kJ/mol
گرمای هم جوشی 369.9 kJ/mol
فشار بخار Pa at K
سرعت صوت m/s at K
متفرقه
الکترونگاتیویته 2.18 (درجه پاولینگ)
ظرفیت گرمایی ویژه 330 J/kg*K
رسانائی الکتریکی 3.45 106/m اهم
رسانائی گرمایی 50 W/m*K
1st پتانسیل یونیزاسیون 947.0 kJ/mol
2nd پتانسیل یونیزاسیون 1798 kJ/mol
3rd پتانسیل یونیزاسیون 2735 kJ/mol
4th پتانسیل یونیزاسیون 4837 kJ/mol
5th پتانسیل یونیزاسیون 6043 kJ/mol
6th پتانسیل یونیزاسیون 12310 kJ/mol
پایدارترین ایزوتوپها
isoNAنیمه عمر DMDE MeVDP
75As100%As با 42 نوترون پایدار است
واحدهای SI & STP استفاده شده ، مگر آنکه ذکر شده باشد.

اطلاعات اولیه

آرسنیک ، عنصر شیمیایی است که در جدول تناوبی با علامت As مشخص است و دارای عدد اتمی 33 می‌باشد. آرسنیک ، شبه فلز سمی معروفی است که به سه شکل زرد ِ سیاه و خاکستری یافت می‌شود. آرسنیک و ترکیبات آن ، بعنوان آفت‌کش مورد استفاده قرار می‌گیرند: علف کش ، حشره کش و آلیاﮊهای مختلف.

تاریخچه

آرسنیک ( واﮊه یونانی arsenikon به معنی اریپمنت زرد ) در دوران بسیار کهن شناخته شده است . از این عنصر به کرات برای قتل استفاده شده است. علائم مسمومیت با این عنصر تا قبل از آزمایش مارش تا حدی نا مشخص بود. "آلبرتوس مگنوس" را اولین کسی می دانند که در سال 1250 این عنصر را جدا کرد . "جوان شرودر" در سال 1649 دو روش برای تهیه آرسنیک منتشر کرد.

عکس پیدا نشد

پیدایش

آرسوپیزیت ( سنگ آرسنیک) که میس پیکل Mispickel هم نامیده می‌شود، سولفوری است که بر اثر حرارت ، بیشترِن مقدار آرسنیک از سولفید آهن آن جدا می‌شود. مهمترین ترکیبات آرسنیک عبارت است از: آرسنیک سفید ، سولفید آن ، گرد حشره کش ، آرسنیت کلسیم و آرسنیت سرب.

از گرد حشره کش ، آرسنیت کلسیم و آرسنیت سرب بعنوان سموم و حشره کشها در کشاورزی استفاده می‌شود .این عنصر گاها" بصورت خالص یافت می‌شود، ولی معمولا" بصورت ترکیب با نقره ، کبالت ، نیکل ، آهن ، آنتیموان یا سولفور وجود دارد.

خصوصیات قابل توجه

آرسنیک از نظر شیمیایی شبیه فسفر است، تا حدی که در واکنشهای بیوشیمیایی می‌تواند جایگزین آن شود. لذا سمی می‌باشد. وقتی به آن حرارت داده شود، بصورت اکسید آرسنیک در می‌آید (اکسیده می‌شود) که بوی آن مانند سیر است. آرسنیک و ترکیبات آن همچنین می‌توانند بر اثر حرارت به گاز تبدیل شوند. این عنصر به دو صورت جامد وجود دارد: زرد و خاکستری فلز مانند.

کاربردها

  • در قرن بیستم ، آرسنِت سرب بعنوان یک آفت کش برای درختان میوه به‌خوبی مورد استفاده قرار گرفت، ( استفاده از آن در افرادِکه به این کار اشتغال داشتند، ایجاد آسیبهای عصب شناسی کرد ) و آرسنیت مس در قرن نوزدهم بعنوان عامل رنگ کننده در شیرینی‌‌ها بکار رفت.
  • در سموم کشاورزی و حشره کشهای مختلف استفاده می‌شود.
  • آرسنید گالیم یک نیمه رسانای مهمی است که در IC ها بکار می‌رود. مدارهایی که از این ترکیب ساخته شده‌اند، نسبت به نوع سیلیکونی بسیار سریعتر هستند ( البته گرانتر هم می‌باشند ). آرسنید گالیم بر خلاف سیلیکون آن band gap مستقیم است. پس می‌تواند در دیودهای لیزری و LED ها برای تبدیل مستقیم الکتریسیته به نور بکار رود.
  • تری‌اکسید آرسنیک در خون شناسی برای درمان بیماران سرطان خون حاد که در برابر ATRA درمانی مقاومت نشان می‌دهند، بکار می‌رود.
  • در برنز پوش کردن و ساخت مواد آتش بازی و ترقه مورد استفاده قرار می‌گیرد.

هشدارها

آرسنیک و بسیاری از ترکیبات آن سمی هستند. آرسنیک با مختل کردن وسیع سیستم گوارشی و ایجاد شوک ، منجر به مرگ می‌شود.

+ نوشته شده در 90/05/13ساعت 16:43 توسط کیوان فرهادی |


Silicon - Phosphorus - Sulfur
N
P
As  
 
 
img/daneshnameh_up/b/b8/P_TableImage.png
عمومی
نام, علامت اختصاری, شمارهPhosphorus, P, 15
گروه شیمیایی نافلز
گروه, تناوب, گروه15 «VA), 3 , p
جرم حجمی, سختی 1823 kg/m3, __
رنگ بی رنگ/قرمز/سفید نقره ای
img/daneshnameh_up/8/82/125pxP2C15.jpg
خواص اتمی
وزن اتمی 30.973761 amu
شعاع اتمی (calc.) 100 (98) pm
شعاع کووالانسی 106 pm
شعاع وندروالس 180 pm
ساختار الکترونی Ne]3s2 3p3]
e- بازای هر سطح انرژی2, 8, 5
درجه اکسیداسیون «اکسید) ±3, 5, 4 «اسید ضعیف)
ساختار کریستالی مونوکلینیک
خواص فیزیکی
حالت ماده جامد
نقطه ذوب 317.3 K (111.6 °F)
نقطه جوش 550 K (531 °F)
حجم مولی 17.02 ש»10-6 ««متر مکعب بر مول
گرمای تبخیر 12.129 kJ/mol
گرمای هم جوشی 0.657 kJ/mol
فشار بخار 20.8 Pa at 294 K
سرعت صوت اطلاعات موجود نیست
متفرقه
الکترونگاتیویته 2.19 «درجه پائولینگ)
ظرفیت گرمایی ویژه 769 J/«kg*K)
رسانائی الکتریکی 1.0 10-9/m اهم
رسانائی گرمایی 0.235 W/«m*K)
1st پتانسیل یونیزاسیون 1011.8 kJ/mol
2nd پتانسیل یونیزاسیون 1907 kJ/mol
3rd پتانسیل یونیزاسیون 2914.1 kJ/mol
4th پتانسیل یونیزاسیون 4963.6 kJ/mol
5th پتانسیل یونیزاسیون 6273.9 kJ/mol
پایدارترین ایزوتوپها
ایزوNAطولانی ترین d|t½ 25.34 نیمه عمر (P-32)است.
31P100%P با16 نوترون پایدار است.
واحدهایSI &STP استفاده شده مگر آنکه ذکر شده باشد.


فسفر یک عنصر شیمیایی جدول تناوبی است که نماد آن P و عدد اتمی آن 15 میباشد. فسفر یکی از نافلزات چند ظرفیتی گروه نیتروژن بوده و معمولا در سخره ها و کانی های فسفاتی و همچنین در تمام سلولهای زنده یافت میشود ولی هیچگاه به صورت طبیعی تنها و بدون ترکیب با عناصر دیگر وجود ندارد. فسفر بسیار واکنش پذیر بوده و هنگام ترکیب با اکسیژن نور کمی از خود ساتع میکند. از عناصر لازم و حیاتی ارگان های زنده بوده و نامش به شکلهای گوناگون ذکر میشود. مهمترین استفاده فسفر در تولید کود میباشد. همچنین در تولید مواد منفجره کبریت آتش بازی مواد حشره کش خمیر دندان و مواد شوینده و همچنین مانیتورهای کامپیوتر نیز کاربرد دارد.

خصوصیات قابل توجه


فسفر معمولا به شکل یک ماده جامد و موم مانند سفید رنگ است که بوی نامطبوعی دارد. فسفر خالص بی رنگ و شفاف است. اگرچه این نافلز در آب قابل حل نیست ولی در دی سولفید کربن حل میشود. فسفر خالص به سرعت در هوا میسوزد و تبدیل به پنتا اکسید فسفر میشود.

گونه ها


فسفر به چهار پنج شکل مختلف وجود دارد . سفید (یا زرد) قرمز سیاه (یا بنفش). که متداول ترین آنها فسفر قرمز و سفید میباشند که که هر دوی آنان از گروه چهار اتمی های چهار وجهی میباشند. فسفر سفید در تماس با هوا میسوزد و در مجاورت با گرما یا نور به فسفر قرمز تبدیل میشود که دو حالت آفا و بتا دارد که با انتقال دمای -3.8 درجه سانتیگراد از هم تفکیک میشوند. در عوض فسفر قرمز پایدار تر بوده و در فشار بخار 1 اتمسفر در 17 درجه سانتیگراد تصعید می شود و از تماس و یا گرمای مالشی میسوزد. فسفر سیاه چندشکلی Allotrope هم در ساختاری مشابه گرافیت که در آن اتمها در یک صفحه شش وجهی چیده شده و هادی جریان الکتریسیته هستند وجود دارد.

کاربردها


اسید فسفریک غلیظ شده که 70% تا 75% P2O))5 دارد. در(( کشاورزی و تولید کود بسیار مهم میباشد. در نیمه دوم قرن بیستم نیاز بیشتر به کودها تولیدات فسفری را به مقدار قابل توجهی افزایش داد.
دیگر کاربردهای فسفر عبارتند از:

نقش بیولوژیکی


ترکیبات فسفری نقش حیاتی در تمام گونه های حیات شناخته شده در زمین دارد. فسفرهای معدنی نقش کلیدی در ملوکولهای بیولوژیکی مانند DNA و RNA که قسمتی از استقامتهای ملوکولی را شکل میدهند بازی میکنند. همچنین سلولهای زنده از فسفرهای معدنی برای ذکیره و انتقال انرژی سلولی از طریق تری فسفات آدنوزین ATP استفاده میکنند. نمکهای فسفات کلیسیوم هم توسط حیوانات برای سفت شدن استخوان استفاده میشود. ضمناً فسفر یک عضو حیاتی برای پروتوپلاسمهای سلولی و بافتهای عصبی میباشد.

تاریخچه


فسفر (که یونانی آن فسفروس به معنای"حامل روشنایی" و از نامهای باستانی سیاره زهره میباشد ) در سال 1669 توسط شیمیدان آلمانی Henning Brand در حین تولید یک دارو از ادرار کشف شد. براند با تبخیر ادرار سعی در تقطیر نمک داشت که در این فرایند ماده سفید رنگی تولید شد که در تاریکی میدرخشید و با نور زیادی میسوخت. از آن روز تابندگی فسفری برای شرح اشیاءی که در شب بدون سوختن میدرخشند بکار برده شد.

کبریتهای اولیه که از فسفر سفید در ترکیباتشان اسفاده میشد به دلیل سمی بودن خطرناک بودند و استفاده از آنها موجبات قتل و خودکشی و .... را فراهم میکرد. (یک داستان نا معلوم حکایت از این دارد که زنی با اضافه کردن فسفر سفید به غذای شوهرش قصد کشتن وی را داشت که هنگام جوشانیدن غذا به دلیل به وجود آمد بخار نورانی لو رفت.)

همچنین کارگران کبریت ساز به دلیل مجاورت با بخار آن دچار مردگی استخوانهای فک میشدند. زمانی که فسفر قرمز که خاصیت آتش زایی و سمی به مراتب کمتری را دارد کشف شد جایگزین فسفر سفید در صنعت کبریت سازی گردید.

پیدایش


فسفر به دلیل واکنش پذیری در هوا و دیگر مواد حاوی اکسیژن به تنهایی در طبیعت یافت نمیشود ولی به صورت ترکیبی به مقدار زیادی در معادن گوناگون پخش شده اند. که بزرگترین این معادن در روسیه مراکش فلوریدا Idaho, Tennesse و Utah قرار دارد.

فسفرهای چندشکلی سفید میتوانند به شیوه های گوناگونی تهیه شوند. در یک فرایند تری کلسیم فسفات که از سخره های فسفاتی گرفته شده در مجاورت کربن و سیلیکا در کوره های سوختی یا برقی حرارت داده میشود. در این فرایند عناصر فسفری به صورت بخار آزاد شده و به صورت اسید فسفریک جمع آوری میشوند.

هشدارها


فسفر یک ماده بسیار سمی میباشد و حتی مقدار 50 mg آن کشنده و مرگ آور است.

فسفر سفید باید همیشه در زیر آب نگهداری شود چرا که در مجاورت هوا بسیار واکنش پذیر میباشد. هنگام کار با آن حتما باید از انبر استفاده شود چرا که تماس آن با پوست میتواند باعث سوختگی های مزمن شود. خاصیت سمی و مزمن فسفر سفید باعث میشود که کارگرانی که باید با آن کنند دچار بیماری Necrosis of the Jaw مردگی فک که اصطلاحا PhossyJaw نامیده میشود گرفتار آیند. استرهای فسفاتی برای سیستم عصبی سمی هست�

+ نوشته شده در 90/05/11ساعت 20:51 توسط کیوان فرهادی |

منبع : http://www.felezat.com/scientific%20archieve/matlab32.htm

تاثیر سیلیسیم در چدن و فولاد

نویسنده:احمد محمد پور(مدرس مرکز انقلاب اسلامی )

اثر سیلیسیم در چدن

سیلیسیم بین عناصر آلیاژی ، قویترین عامل گرافیت زا بشمار می رود که با نقطه ذوب c1410 است که با ترکیب فروسیلیسیم به چدن اضافه می گردد. حضور سیلیسیم باعث سهولت تجزیه سمنتیت شده و به گرافیت زایی در جریان عملیات حرارتی در چدن مالیبل کمک می کند با افزایش مقدار سیلیسیم در چدن طول مرحله آنیلینگ کوتاه می گردد و افزایش مقدار سیلیسیم باعث جلوگیری از سفید شدن چدن شده و بجای چدن سفید چدن خالدار و چدن خاکستری تولید میگردد بنابراین باید حد معینی از سیلیسیم استفاده کنیم محدودیت دیگر استفاده از سیلیسیم زیاد باعث فریتی کردن زمینه و در نتیجه کاهش استحکام خواهد شد . لازم به تذکر است که سیلیسیم مازاد بر مقدار فوق در فریت حل شده و استحکام و سختی را مجدداً افزایش می دهد میزان افزایش بستگی به درصد سیلیسیم حل شده در فریت دارد و می تواند با سختی 100 الی 140 برینل باشد. در عمل برای اجتناب از تشکیل کاربید در چدنهای خاکستری با استحکام بالا به جای استفاده از سیلیسیم به عنوان عنصر آلیاژی از مواد جوانه زا حاوی سیلیسیم استفاده می شود مواد فوق درست قبل از ریخته گری به مذاب اضافه میگردد و چدنهای باسیلیسیم بالا که مقاوم در برابر خوردگی می باشد حدود 14 تا 17 درصد سیلیسیم دارند. و در مقابل اسید سولفوریک،اسید نیتریک مقاوم هست.
تاثیر سیلیسیم در فولاد
این عنصر غیر فلزی به شکل فروسیلیسیم توسط فولاد سازان و به عنوان عنصر اکسیژن زدا و سخت کننده فولادهای کربن دار آلیاژی مصرف می شود.در صورتیکه حداکثر درصد سیلیسیم مصرفی فولادی بین 6% تا 2/2 درصد باشد،آنرا فولاد آلیاژی سیلیسیمی گویند.تمام فولادهای استاندارد دیگر،مقدار سیلیسمی بین2% تا35% درصد دارند.
  چند اثر مختلف سیلیسیم عبارتند از :
1-سیلیسیم به همراه عناصر آلیاژهای دیگر نظیر کرم،نیکل،تنگستن،سبب افزایش مقاومت فولاد در برابر اکسیداسیون در دمای بالا می شود؛
2-در اثر افزودن سیلیسیم به فولاد قابلیت کربن زدایی و گرافیتی شدن افزایش می یابد.
3-وجود سیلیسیم در فولاد،درجه حرارت بحرانی را در عملیات حرارتی افزایش می دهد .

 

                                                                                                                     info@felezat.com



منبع : دانشنامه رشد


تصویر
سیلیکون

نگاه کلی

سیلیکونها گروه بسیار مفید و پرکار برای پلیمرها هستند. این مواد دارای خواص جالبی در دماهای بالا و پایین می‌باشند. در مقابل شرایط جوی مانند رطوبت و نور ، مقاومت خوبی دارند و تا دمای تا درجه سانتی‌گراد خاصیت لاستیکی خود را حفظ می‌کنند. از سیلیکونها درترکیب رنگها ، صنعت لاستیک و روغنهای صنعتی بطور گسترده استفاده می‌شود.

پلیمرهای سیلیکون

بسیاری از پلیمرهای سیلیکون مورد استفاده در صنعت ، دارای ساختار کلی R2SiOn می‌باشند. گروه R ممکن است متیل یا گروه فنیل باشد. بخش عمده پلیمر سیلیکون ، دی‌متیل سیلیکون می‌باشد. از گروههای فنیل تنها برای تولید پلیمرهای ویژه و بهبود خواص پلیمر در دمای پایین استفاده می‌شود. سیلیکانها از واکنش کلر و سیلانها با آب بدست می‌آیند. با پیرایش گروه انتهایی این پلیمر ، می‌توان فراورده‌های گوناگونی از آن تهیه کرد. انواع محصولات سیلیکونی مورد مصرف در زیر می‌آید.

روغنهای سیلیکون

روغنهای سیلیکون ، بسیار واکنش ناپذیر هستند. این روغنها با ختم زنجیر پلیمر به یک سیلان دارای یک گروه واکنش پذیر مانند تری‌متیل کلروسیلان و با انجام واکنش با آب تهیه می‌شوند. این روغنها نسبت به سایر پلیمرها وزن مولکولی کمتری دارند و به‌عنوان روان کننده استفاده می‌شوند. در کروماتوگرافی مایع - جامد و مایع - مایع از سیلیکاژل به‌عنوان ماده جاذب استفاده می‌شود.

لاستیکهای سیلیکون

لاستیکهای سیلیکون ، از پلیمرهای دارای گروههای مختلف واکنش پذیر و معمولاً به سه روش تهیه می‌شوند.

پخت تراکمی دوجزئی

تراکم دوجزئی پلیمرهای سیلیکون معمولاً با گروههای هیدروکسیل ختم می‌شود. این رزینها معمولا دارای یک عامل شبکه ساز مانند متیل سیلیکون می‌باشند. برای انجام واکنش شبکه‌سازی معمولا از یک آغازگر مانند ترکیبات آلی قلع استفاده می‌شود. این واکنشها معمولا دارای فراورده‌های فرعی هستند. مخصوصا اگر واکنش درفضای بسته صورت گیرد یا مواد اولیه به صورت لایه‌های ضخیم استفاده شود.

پخت رطوبتی یک‌جزئی

سیلیکونهای یک جزئی با رطوبت هوا پرورانده می‌شوند. سیستمهای نمونه به گروههای استات ختم شده‌اند. دراثر ایجاد شبکه با رطوبت ، استیک اسید آزاد می‌شود. اسید استیک آزاد شده در این واکنش سبب خورده شدن فولاد ، مس و سایر فلزات می‌شود. برای جلوگیری از این مسئله پلیمرهایی تهیه شده‌اند که فراورده فرعی آنها خورنده نیست. اغلب سیستم‌های یک‌جزئی ، از نوع دی‌متیل سیلیکون هستند.


تصویر
سیلیکون

پخت دوجزئی وینیل

می‌توان گروههای وینیل را به‌عنوان گروههای انتهایی وارد پلیمرهای سیلیکون ساخت. دو روش برای پخت گروههای وینیل وجود دارد :


  • با یک ترکیب دارای هیدروژن فعال
  • با یک عامل پخت رادیکالی مانند پروکسید.

رزینهای مایع را معمولا به کمک روش اول تولید می‌کنند و از کاتالیزوزهای پلاتین اسید کلروپلاتینیک استفاده می‌کنند. این واکنش معمولا فرآورده جنبی ندارد. اما سیلیکونهای تولید شده با پخت وینیل به‌راحتی ناخالص می‌شوند. واکنش میان ناخالصی‌ها و هیدروژن سیلیکون باعث تولید گاز هیدروژن و اسفنجی شدن رزین می‌شود. در نتیجه استحکام آن کاهش می‌یابد.

دامنه کاربرد لاستیکهای سیلیکون از دمای تا درجه سانتی‌گراد می‌باشد. نقطه شکنندگی این لاستیکها در دمای پایین با مقدار فنیل آنها تعیین می‌شود. گروههای فنیل را برای کاهش تبلور در پلیمر وارد می‌کنند. در دمای پایین ، استحکام لاستیک سیلیکون افزایش می‌یابد و پایین‌تر از نقطه شکنندگی ، لاستیک ، کشسانی خود را از دست می‌دهد. نقاط شکنندگی دی‌متیل سیلیکون پایین‌تر از و متیل فنیل پائین‌تر از درجه سانتی‌گراد می‌باشد.

محصولات دیگر سیلیکون

صمغهای سیلیکونی پلیمرهایی با وزن مولکولی بالا هستند. رقیق کننده‌های سیلیکونی سیالهای واکنش ناپذیر سیلیکون هستند. سیلیکونهای سخت در جلاهای سیلیکونی و رزینهای لعابی بکار می‌روند و گریس سیلیکون که از آمیختن سیلیکای اسفنجی با سایر پر کننده‌ها با روغن سیلیکون تهیه می‌شوند و کاربرد وسیعی در دماهای مختلف دارند از تا ).

خواص سیلیکونها

سیلیکونها چسبندگی بسیار خوبی دارند و برخی بطور طبیعی ، چسب می‌باشند. سیلیکونها بهترین رهاساز قالبی هستند. روغن سیلیکون به‌عنوان رهاساز قالب بکار می‌رود، اما ممکن است روی جسم قالب‌گیری شده منتقل شود و رنگ آمیزی را دشوار کند. مقاومت سیلیکونها در برابر شرایط جوی بسیار خوب است. نور فرابنفش ، ازن ، آب و ... حتی برای مدت ده سال هم بر روی آنها بی‌اثرند. قارچها می‌توانند روی لاستیکهای سیلیکون رشد کنند. اما با شوینده‌های قوی از بین می‌روند. در فرمولبندی‌های جدید ، سیلیکونهای مقاوم در برابر قارچ هم تولید می‌شوند.

+ نوشته شده در 90/05/11ساعت 20:32 توسط کیوان فرهادی |


Carbon - Nitrogen - Oxygen

N
P

img/daneshnameh_up/2/27/N_TableImage.png
جدول کامل
عمومی
نام , علامت اختصاری , شمارهNitrogen, N, 7
گروه شیمیایی نافلز
گروه , تناوب , بلوک15 «VA), 2 , p
جرم حجمی , سختی 1.2506 kg/m3(273K), NA
رنگ بی‌رنگ
img/daneshnameh_up/f/f0/125pxN2C7.jpg
خواص اتمی
وزن اتمی 14.0067 amu
شعاع اتمی (calc.) 65 (56) pm
شعاع کووالانسی 75 pm
شعاع وندروالس 155 pm
ساختار الکترونی He]2s22p3]
-e بازای هر سطح انرژی2, 5
درجه اکسیداسیون (اکسید) ±3,5,4,2 (اسید قوی)
ساختار کریستالی شش گوش
خواص فیزیکی
حالت ماده گاز__
نقطه ذوب 63.14 K (-345.75 ?F)
نقطه جوش 77.35 K (-320.17 ?F)
حجم مولی 13.54 ש»10-3 ««متر مکعب بر مول
گرمای تبخیر 2.7928 kJ/mol
گرمای هم‌جوشی 0.3604 kJ/mol
فشار بخار Pa at K
سرعت صوت 334 m/s at 298.15 K
متفرقه
الکترونگاتیویته 3.04 «درجه پائولینگ)
ظرفیت گرمایی ویژه 1040 J/kg*K
رسانائی الکتریکی __ 106/m اهم
رسانائی گرمایی 0.02598 W/m*K
1st پتانسیل یونیزاسیون 1402.3 kJ/mol
2nd پتانسیل یونیزاسیون 2856 kJ/mol
3rd پتانسیل یونیزاسیون 4578.1 kJ/mol
4th پتانسیل یونیزاسیون 7475.0 kJ/mol
5th پتانسیل یونیزاسیون 9444.9 kJ/mol
6th پتانسیل یونیزاسیون 53266.6 kJ/mol
7th پتانسیل یونیزاسیون 64360 kJ/mol
پایدارترین ایزوتوپها
ایزووفور طبیعینیمه عمر DMDE MeVDP
13N{syn.}9.965 me capture2.22013C
14N99.634%N با 7 نوترون پایدار است.
15N0.366%N با 8 نوترون پایدار است
واحدهای SI & STP استفاده شده است، مگر آنکه ذکر شده باشد.

تاریخچه

نیتروژن (که لاتین آن nitrum و یونانی آن nitron به معنی جوش شیرین محلی ، شکل دادن و ژن یا عامل می‌باشد) ، توسط شخصی به نام "Daniel Rutherford" که آن را هوای مهلک نامید، در سال 1772 کشف شد. دو اواخر قرن 18 ، شیمیدانان بخشی از هوا را یافتند که عمل احتراق را همراهی نمی‌کرد. در همان زمان ، نیتروژن توسط Carl Wilhelm Scheele ، Henry Cavendish و Joseph Priestley که آن را هوای سوخته نامیدند، مطالعه و برسی شد. گاز نیتروژن به‌قدری بی‌اثر بود که Antoine Lavoisier ، آن را ازت که به معنی بدون زندگی است، نام نهاد.

ترکیبات نیتروژن در قرون وسطی شناخته شده بود. کیمیاگران ، اسید نیتریک را به‌عنوان بازدم آب می‌شناختند. ترکیب نیتریک و اسید هیدروکلریک که به‌عنوان تیزاب سلطانی شناخته شده بود، برای آب کردن طلا مشهور بود.

اطلاعات کلی

نیتروژن ، یکی از عناصر شیمیایی در جدول تناوبی است که نماد آن ، N و عدد اتمی آن 7 است. نیتروژن معمولا به صورت یک گاز ، غیر فلز ، دو اتمی بی‌اثر ، بی‌رنگ ، بی‌مزه و بی‌بو است که 78% جو زمین را در بر گرفته و عنصر اصلی در بافتهای زنده است. نیتروژن ، ترکیبات مهمی مانند آمونیاک ، اسید نیتریک و سیانیدها را شکل می‌دهد.

خصوصیات قابل توجه

نیتروژن ، از گروه غیر فلزات بوده ، دارای بار الکترون منفی 3.0 می‌باشد. نیتروژن ، پنج الکترون در پوسته خود داشته ، در نتیجه در اکثر ترکیبات سه‌ظرفیتی می‌باشد. نیتروژن خالص یک گاز بی‌اثر و بی‌رنگ می‌باشد و 78% جو زمین را به خود اختصاص داده است. در 77K منجمد شده و در 63k به‌صورت مایع تبدیل به ماده برودتی معروف Cryogen می‌شود.

کاربردها

مهمترین کاربرد اقتصادی نیتروژن برای ساخت آمونیاک از طریق فرایند هابر (Haber) می‌باشد. آمونیاک ، معمولا برای تولید کود و مواد تقویتی و اسید نیتریک استفاده می‌شود. نیتروژن همچنین بعنوان پر کننده بی‌اثر ، در مخزنهای بزرگ برای نگهداری مایعات قابل انفجار در هنگام ساخت قطعات الکترونیک مانند ترانزیستور ، دیود و مدار یکپارچه و همچنین برای ساخت فلزات ضد زنگ استفاده می‌شود.

نیتروژن همچنین به‌صورت ماده خنک کننده ، برای هم منجمد کردن غذا و هم حمل و نقل آن ، نگهداری اجساد و سلولهای تناسلی (اسپرم و تخم مرغ) و در بیولوژی برای نگهداری پایدار از نمونه‌های زیستی کاربرد دارد. نمک اسید نیتریک شامل ترکیبات مهمی مانند نیترات پتاسیم و سدیم و نیترات آمونیم می‌باشد که اولی ، برای تولید باروت و دومی برای تولید کود بکار می‌رود. ترکیبات نیترات شده مانند نیتروگلیسرین و تری‌نیترو تولوئن (TNT) معمولا منفجر شونده هستند.

اسید نیتریک به‌عنوان ماده اکسید کننده در مایع سوخت راکت‌ها استفاده می‌شود. هیدرازین و مشتقات آن نیز در سوخت راکت‌ها بکار می‌روند. نیتروژن ، اغلب در مبردها (Cryogenic) ، به‌صورت مایع (معمولا LN2) استفاده می‌شود. نیتروژن مایع با عمل تقطیر هوا بدست می‌آید. در فشار جو ، نیتروژن در دمای 195.8- درجه سانتی‌گراد (320.4- درجه فارنهایت) مایع می‌شود.

پیدایش

نیتروژن ، بیشترین عنصر جو کره زمین از نظر حجم می‌باشد. (78.1 % حجمی) و برای اهداف صنعتی با عمل تقطیر هوای مایع بدست می‌آید. ترکیباتی که حاوی این عنصر هستند، در فضای بیرونی نیز مشاهده شده‌اند . نیتروژن -14 در اثر عمل هم‌جوشی هسته‌ای در ستارگان ، تولید می‌گردد. نیتروژن از ترکیبات عمده ضایعات حیوانی (مانند چلغوز یا کود) بوده ، معمولا به‌صورت اوره ، اسید اوریک و ترکیباتی از محصولات نیتروژنی یافت می‌شود.

ترکیبات

اصلی‌ترین هیدرید نیتروژن ، آمونیاک است ( NH3). البته هیدرازین (N2H4) نیز مشهور است. ترکیب آمونیاک ، ساده‌تر از آب بوده ، در محلول ، یون آمونیم (4+NH4) را تشکیل می‌دهد. آمونیاک مایع در حقیقت کمی آمفیروتیک بوده ، آمونیاک و یونهای آمینه (-NH2) را بوجود می‌آورد که البته هر دو نمک آمیدها و نیترید شناخته شده‌اند، ولی در آب تجزیه می‌شوند. ترکیبات جانشین آمونیاک به‌تنهایی یا باهم ، آمین نامیده می‌شوند. زنجیره‌ها ، حلقه‌ها و ساختارهای بزرگتر هیدریدهای نیتروژنی نیز شناخته شده‌اند، ولی در واقع ناپایدار هستند.

گروههای دیگر آنیونهای نیتروژن ، آزیدین‌ها (-N3) هستند که خطی بوده ، نسبت به دی‌اکسید کربن ، ایزو الکتریک می‌باشند. مولکول دیگر با ساختار مشابه ، منوکسید دی‌نیتروژن N2O یا گاز خنده می‌باشد و یکی از اکسیدهای گوناگون بوده ، برجسته‌تر از منوکسید نیتروژن (NO ) و دی‌اکسید نیتروژن (NO2) است که هر دوی آنها الکترون غیر زوج دارند که دومی تمایلی را به دی‌مر شدن نشان داده ، از اجزای تشکیل دهنده هوای آلوده است.

اکسیدهای استاندارد بیشتری مانند تری‌اکسید دی‌نیتروژن (N2O3) و پنتاکسید دی‌نیتروژن (N2O5) معمولا تا حدی ناپایدار و قابل انفجار هستند. اسیدهای متناظر آنها ، نیتروس (HNO2) و اسید نیتریک (HNO3) بوده ، ‌با نمکهای متناظر که نیتریتها و نیتراتها نامیده می‌شوند. اسید نیتریک یکی از چند اسیدی است که از هیدرونیوم ، قوی‌تر می‌باشد.

نقش بیولوژیکی

نیتروژن ،‌ عنصر اصلی اسیدهای آمینه و اسیدهای هسته‌ای که نیتروژن را ماده ای حیاتی برای ادامه زندگی می‌کنند، می‌باشد. لوبیا مانند اکثر گیاهانی که دانه‌های سبوسی دارند، می‌تواند عمل بازیافت نیتروژن را بطور مستقیم از هوا انجام دهد، چراکه ریشه‌های آنها دارای برآمدگی‌هایی برای نگهداری میکروبهایی است که عمل تبدیل به آمونیاک را با فرایندی به نام تثبیت نیتروژن انجام می‌دهند، می‌باشد. این گیاهان ، آمونیاک را به اکسیدهای نیتروژن و آمینو اسید تبدیل کرده ، پروتئین می‌سازند.

ایزوتوپها

نیتروژن ، دو ایزوتوپ پایدار دارد: (N-14 , N-15) که مهمترین آن دو N-14 99.634% می‌باشد که در چرخه CNO در ستارگان تولید می‌شود. مابقی ، ایزوتوپ N-15 می‌باشد. یکی از ده ایزوتوپی که به‌صورت مصنوعی تولید می‌شوند، دارای نیمه عمر نه دقیقه‌ای بوده ، ایزوتوپهای دیگر ، نیمه عمر چند ثانیه یا کمتر دارند. واکنشهای بیولوژیکی-واسطهای (مانند همانند سازی ، جذب و ترکیب نیترات‌سازی) و ... ، پویایی نیتروژن در خاک را به‌شدت کنترل می‌کنند.

این ترکیبات ، معمولا باعث عمل غنی‌سازی N-15 لایه زیرین و تخلیه محصول می‌شود. البته این فرایند سریع ، اغلب مقادیری از آمونیوم و نیترات نیز در بردارد. خاک نیتراتی نسبت به خاک آمونیومی ، توسط ریشه درختان بهتر جذب و ترکیب می‌شود.

هشدارها

کودهای نیتراتی شسته شده ، منبع اصلی آلودگی رودها و آبهای زیرزمینی است. سیانو (-CN) ، حاوی ترکیباتی است که بی‌نهایت سمی بوده ، برای حیوانات و همه پستانداران کشنده است.

+ نوشته شده در 90/05/11ساعت 20:0 توسط کیوان فرهادی |

مطالب قدیمی‌تر